Export the polars object as a tibble data frame
Description
This S3 method is basically a shortcut of as_polars_df(x,
…)$to_struct()$to_r_vector(struct = "tibble")
. Additionally, you
can check or repair the column names by specifying the
.name_repair
argument. Because polars DataFrame allows
empty column name, which is not generally valid column name in R data
frame.
Usage
## S3 method for class 'polars_data_frame'
as_tibble(
x,
...,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",
"universal_quiet"),
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")
)
# S3 method for class 'polars_lazy_frame'
as_tibble(
x,
...,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",
"universal_quiet"),
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")
)
Arguments
x
|
A polars object |
…
|
Passed to as_polars_df() .
|
.name_repair
|
Treatment of problematic column names:
repair to
vctrs::vec_as_names() . See there for more details on these
terms and the strategies used to enforce them.
|
uint8
|
Determine how to convert Polars’ UInt8 type values to R type. One of the
followings:
|
int64
|
Determine how to convert Polars’ Int64, UInt32, or UInt64 type values to
R type. One of the followings:
|
date
|
Determine how to convert Polars’ Date type values to R class. One of the
followings:
|
time
|
Determine how to convert Polars’ Time type values to R class. One of the
followings:
|
decimal
|
Determine how to convert Polars’ Decimal type values to R type. One of
the followings:
|
as_clock_class
|
A logical value indicating whether to export datetimes and duration as
the clock package’s classes.
|
ambiguous
|
Determine how to deal with ambiguous datetimes. Only applicable when
as_clock_class is set to FALSE and datetime
without timezone values are exported as POSIXct. Character vector or
expression containing the followings:
|
non_existent
|
Determine how to deal with non-existent datetimes. Only applicable when
as_clock_class is set to FALSE and datetime
without timezone values are exported as POSIXct. One of the followings:
|
Value
A tibble
See Also
-
as.data.frame(\
: Export the polars object as a basic data frame.)
Examples
library("polars")
# Polars DataFrame may have empty column name
df <- pl$DataFrame(x = 1:2, c("a", "b"))
df
#> shape: (2, 2)
#> ┌─────┬─────┐
#> │ x ┆ │
#> │ --- ┆ --- │
#> │ i32 ┆ str │
#> ╞═════╪═════╡
#> │ 1 ┆ a │
#> │ 2 ┆ b │
#> └─────┴─────┘
#> # A tibble: 2 × 2
#> x ``
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> # A tibble: 2 × 2
#> x ``
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> # A tibble: 2 × 2
#> x ...2
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> # A tibble: 2 × 2
#> x ...2
#> <int> <chr>
#> 1 1 a
#> 2 2 b