Skip to content

Compute the kurtosis (Fisher or Pearson)

Description

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is FALSE then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators.

Usage

<Expr>$kurtosis(..., fisher = TRUE, bias = TRUE)

Arguments

These dots are for future extensions and must be empty.
fisher If TRUE (default), Fisher’s definition is used (normal ==\> 0.0). If FALSE, Pearson’s definition is used (normal ==\> 3.0).
bias If FALSE, the calculations are corrected for statistical bias.

Value

A polars expression

Examples

library("polars")

df <- pl$DataFrame(x = c(1, 2, 3, 2, 1))
df$select(pl$col("x")$kurtosis())
#> shape: (1, 1)
#> ┌───────────┐
#> │ x         │
#> │ ---       │
#> │ f64       │
#> ╞═══════════╡
#> │ -1.153061 │
#> └───────────┘