Skip to content

scan_ipc

Lazily read from an Arrow IPC (Feather v2) file or multiple files via glob patterns

Description

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Usage

pl$scan_ipc(
  source,
  ...,
  n_rows = NULL,
  cache = TRUE,
  rechunk = FALSE,
  row_index_name = NULL,
  row_index_offset = 0L,
  storage_options = NULL,
  retries = 2,
  file_cache_ttl = NULL,
  hive_partitioning = NULL,
  hive_schema = NULL,
  try_parse_hive_dates = TRUE,
  include_file_paths = NULL
)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning cloud locations, see the storage_options parameter.
These dots are for future extensions and must be empty.
n_rows Stop reading from parquet file after reading n_rows.
cache Cache the result after reading.
rechunk In case of reading multiple files via a glob pattern rechunk the final DataFrame into contiguous memory chunks.
row_index_name If not NULL, this will insert a row index column with the given name into the DataFrame.
row_index_offset Offset to start the row index column (only used if the name is set).
storage_options Named vector containing options that indicate how to connect to a cloud provider. The cloud providers currently supported are AWS, GCP, and Azure. See supported keys here:
  • aws
  • gcp
  • azure
  • Hugging Face (hf://): Accepts an API key under the token parameter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment variable.
If storage_options is not provided, Polars will try to infer the information from environment variables.
retries Number of retries if accessing a cloud instance fails.
file_cache_ttl Amount of time to keep downloaded cloud files since their last access time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable (which defaults to 1 hour) if not given.
hive_partitioning Infer statistics and schema from Hive partitioned sources and use them to prune reads. If NULL (default), it is automatically enabled when a single directory is passed, and otherwise disabled.
hive_schema A list containing the column names and data types of the columns by which the data is partitioned, e.g. list(a = pl$String, b = pl$Float32). If NULL (default), the schema of the Hive partitions is inferred.
try_parse_hive_dates Whether to try parsing hive values as date / datetime types.
include_file_paths Character value indicating the column name that will include the path of the source file(s).

Value

A polars LazyFrame

Examples

library("polars")


temp_dir <- tempfile()
# Write a hive-style partitioned arrow file dataset
arrow::write_dataset(
  mtcars,
  temp_dir,
  partitioning = c("cyl", "gear"),
  format = "arrow",
  hive_style = TRUE
)
list.files(temp_dir, recursive = TRUE)
#> [1] "cyl=4/gear=3/part-0.arrow" "cyl=4/gear=4/part-0.arrow"
#> [3] "cyl=4/gear=5/part-0.arrow" "cyl=6/gear=3/part-0.arrow"
#> [5] "cyl=6/gear=4/part-0.arrow" "cyl=6/gear=5/part-0.arrow"
#> [7] "cyl=8/gear=3/part-0.arrow" "cyl=8/gear=5/part-0.arrow"
# If the path is a folder, Polars automatically tries to detect partitions
# and includes them in the output
pl$scan_ipc(temp_dir)$collect()
#> shape: (32, 11)
#> ┌──────┬───────┬───────┬──────┬───┬─────┬──────┬─────┬──────┐
#> │ mpg  ┆ disp  ┆ hp    ┆ drat ┆ … ┆ am  ┆ carb ┆ cyl ┆ gear │
#> │ ---  ┆ ---   ┆ ---   ┆ ---  ┆   ┆ --- ┆ ---  ┆ --- ┆ ---  │
#> │ f64  ┆ f64   ┆ f64   ┆ f64  ┆   ┆ f64 ┆ f64  ┆ i64 ┆ i64  │
#> ╞══════╪═══════╪═══════╪══════╪═══╪═════╪══════╪═════╪══════╡
#> │ 21.5 ┆ 120.1 ┆ 97.0  ┆ 3.7  ┆ … ┆ 0.0 ┆ 1.0  ┆ 4   ┆ 3    │
#> │ 22.8 ┆ 108.0 ┆ 93.0  ┆ 3.85 ┆ … ┆ 1.0 ┆ 1.0  ┆ 4   ┆ 4    │
#> │ 24.4 ┆ 146.7 ┆ 62.0  ┆ 3.69 ┆ … ┆ 0.0 ┆ 2.0  ┆ 4   ┆ 4    │
#> │ 22.8 ┆ 140.8 ┆ 95.0  ┆ 3.92 ┆ … ┆ 0.0 ┆ 2.0  ┆ 4   ┆ 4    │
#> │ 32.4 ┆ 78.7  ┆ 66.0  ┆ 4.08 ┆ … ┆ 1.0 ┆ 1.0  ┆ 4   ┆ 4    │
#> │ …    ┆ …     ┆ …     ┆ …    ┆ … ┆ …   ┆ …    ┆ …   ┆ …    │
#> │ 15.2 ┆ 304.0 ┆ 150.0 ┆ 3.15 ┆ … ┆ 0.0 ┆ 2.0  ┆ 8   ┆ 3    │
#> │ 13.3 ┆ 350.0 ┆ 245.0 ┆ 3.73 ┆ … ┆ 0.0 ┆ 4.0  ┆ 8   ┆ 3    │
#> │ 19.2 ┆ 400.0 ┆ 175.0 ┆ 3.08 ┆ … ┆ 0.0 ┆ 2.0  ┆ 8   ┆ 3    │
#> │ 15.8 ┆ 351.0 ┆ 264.0 ┆ 4.22 ┆ … ┆ 1.0 ┆ 4.0  ┆ 8   ┆ 5    │
#> │ 15.0 ┆ 301.0 ┆ 335.0 ┆ 3.54 ┆ … ┆ 1.0 ┆ 8.0  ┆ 8   ┆ 5    │
#> └──────┴───────┴───────┴──────┴───┴─────┴──────┴─────┴──────┘
# We can also impose a schema to the partition
pl$scan_ipc(temp_dir, hive_schema = list(cyl = pl$String, gear = pl$Int32))$collect()
#> shape: (32, 11)
#> ┌──────┬───────┬───────┬──────┬───┬─────┬──────┬─────┬──────┐
#> │ mpg  ┆ disp  ┆ hp    ┆ drat ┆ … ┆ am  ┆ carb ┆ cyl ┆ gear │
#> │ ---  ┆ ---   ┆ ---   ┆ ---  ┆   ┆ --- ┆ ---  ┆ --- ┆ ---  │
#> │ f64  ┆ f64   ┆ f64   ┆ f64  ┆   ┆ f64 ┆ f64  ┆ str ┆ i32  │
#> ╞══════╪═══════╪═══════╪══════╪═══╪═════╪══════╪═════╪══════╡
#> │ 21.5 ┆ 120.1 ┆ 97.0  ┆ 3.7  ┆ … ┆ 0.0 ┆ 1.0  ┆ 4   ┆ 3    │
#> │ 22.8 ┆ 108.0 ┆ 93.0  ┆ 3.85 ┆ … ┆ 1.0 ┆ 1.0  ┆ 4   ┆ 4    │
#> │ 24.4 ┆ 146.7 ┆ 62.0  ┆ 3.69 ┆ … ┆ 0.0 ┆ 2.0  ┆ 4   ┆ 4    │
#> │ 22.8 ┆ 140.8 ┆ 95.0  ┆ 3.92 ┆ … ┆ 0.0 ┆ 2.0  ┆ 4   ┆ 4    │
#> │ 32.4 ┆ 78.7  ┆ 66.0  ┆ 4.08 ┆ … ┆ 1.0 ┆ 1.0  ┆ 4   ┆ 4    │
#> │ …    ┆ …     ┆ …     ┆ …    ┆ … ┆ …   ┆ …    ┆ …   ┆ …    │
#> │ 15.2 ┆ 304.0 ┆ 150.0 ┆ 3.15 ┆ … ┆ 0.0 ┆ 2.0  ┆ 8   ┆ 3    │
#> │ 13.3 ┆ 350.0 ┆ 245.0 ┆ 3.73 ┆ … ┆ 0.0 ┆ 4.0  ┆ 8   ┆ 3    │
#> │ 19.2 ┆ 400.0 ┆ 175.0 ┆ 3.08 ┆ … ┆ 0.0 ┆ 2.0  ┆ 8   ┆ 3    │
#> │ 15.8 ┆ 351.0 ┆ 264.0 ┆ 4.22 ┆ … ┆ 1.0 ┆ 4.0  ┆ 8   ┆ 5    │
#> │ 15.0 ┆ 301.0 ┆ 335.0 ┆ 3.54 ┆ … ┆ 1.0 ┆ 8.0  ┆ 8   ┆ 5    │
#> └──────┴───────┴───────┴──────┴───┴─────┴──────┴─────┴──────┘